9th Conference on Air Quality Modeling – A&WMA AB-3 Comments on Modeling PM_{2.5} Emissions presented by Bob Paine, CCM, QEP ENSR Corporation 2 Technology Park Drive Westford, MA 01880 Bob.Paine@aecom.com October 10, 2008 #### **Comment Areas** - Characteristics of PM_{2.5} newest and possibly least understood criteria pollutant - Quantifying PM_{2.5} emissions - Current and proposed regulatory requirements - Challenges to PM_{2.5} implementation - Emissions inventories direct and precursors - Modeling techniques guidance? - Background concentrations how to treat - Looking forward ## Characteristics of PM_{2.5} - A Significant Modeling Challenge - Unlike other gaseous criteria pollutants, because PM_{2,5}... - Generally comprises a mixture of solid particles and liquid droplets, some condensing from vapor – source/fuel-specific - Is emitted directly from a source ("primary" or "direct" emissions) and also formed in the atmosphere ("secondary formation") from precursor emissions of SO₂ and NO_x - Contains filterable and condensable components that may be organic or inorganic ### Characteristics of PM_{2.5} Source: VISTAS BART Modeling Protocol (2006) ### PM_{2.5} Emissions Measurement Techniques - Only filterable PM has traditionally been measured, quantified, and modeled based on EPA Reference Method 5 - Existing reference methods for condensable PM have known biases and work is underway to propose more reliable methods - EPA is well aware of limitations to existing PM_{2.5} measurement methods – sulfates can be significantly overestimated - Uncertain emission factors exist for condensable PM – this can be a high percentage of PM_{2.5} #### PM_{2.5} Regulations and Guidance - PM₁₀ surrogate policy for compliance modeling still in effect - Best Available Retrofit Technology implementation guidance - PM_{2.5} NSR implementation rule - PM_{2.5} PSD SILs, SMCs, and increments (proposed 9/21/07; final rule pending) - PSD increment modeling procedures (proposed 6/6/07; final rule pending) #### Modeling Primary vs. Secondary PM_{2.5} - AERMOD considers primary PM_{2.5} only - Primary PM_{2.5} provides highest <u>near-field</u> impacts - Secondary PM_{2.5} only at large distances - Would probably not contribute at location of highest primary impact - Secondary PM_{2.5} could be modeled with CALPUFF - Large SO₂ and NO_x emission reductions may lead to PM_{2.5} increment expansion – does this require an unbiased model to take modeling credit? (AB-3) Committee Are we ready to compile cumulative emission inventories for 3 pollutants? ## PM_{2.5} Regulations and Guidance – Unresolved Issues - Ignore secondary PM_{2.5} modeling for short-range applications - Include secondary PM_{2.5} modeling for long-range applications (e.g., Class I increment)? - How to credit precursor emission reductions? - What is the form of the 24-hour PM_{2.5} increment standard? - To be consistent with the NAAQS, the 24-hour increment should be the highest, 8th – highest - CALPUFF and AERMOD can provide that statistic ### PM_{2.5} Emissions Analysis - Emissions factors are available for certain source types from EPA's AP-42, SPECIATE, and FIRE databases - Certain industry groups have also reviewed stack test data to develop emission factors - EPA demonstrates possible approach in its Interim Regulatory Impact Analysis (RIA) for the Proposed National Ambient Air Quality Standards for Particulate Matter, Appendix B – Local Scale Analysis (2005) - Any of these factors are based on stack test methods known to be unreliable and have biases #### PM2.5 Emissions Case Study Pulp and Paper Recovery Furnace # Example Modeling Challenge: Compute Total PM_{2.5} NAAQS Impact: Background + Source Impact - Conservative approach: add peak percentile source impact to peak percentile background, unpaired in time - Unlikely that these two components happen at the same time - Refined approach adds <u>concurrent</u> daily background and source impact concentrations - If daily background concentrations not available, fill in missing days from higher of two bounding values #### PM_{2.5} Background Concentrations PM_{2.5} ambient monitoring data typically shows that most values are well below the NAAQS standard ## PM_{2.5} Time Series for Background (Blue) and Source Impact (Green) 8th highest value from unpaired addition = 37.5 μg/m³ ## PM_{2.5} Time Series of Concurrent Sum: Background and Source Impact 8th highest value from paired addition = $34.1 \mu g/m3$ #### Summary - PM_{2.5} modeling in a regulatory context poses challenges not previously experienced for other criteria pollutants - Emissions measurement and modeling techniques need to be resolved - Background concentrations can be much higher than modeled concentrations - Due to stringent standards, there is more need for refined modeling approaches - Collaboration necessary to implement reasonable PM_{2.5} impact assessment requirements #### Looking Ahead - Unique and important issues remain unresolved for PM_{2.5} – little EPA guidance - PSD increments and modeling procedures - Role of CALPUFF (or other models) for secondary PM_{2.5} in long-range applications for both increases and decreases in SO₂ and NO_x - Application of local/regional background levels in a regulatory context